CREB Transcriptional Activity in Neurons Is Regulated by Multiple, Calcium-Specific Phosphorylation Events

نویسندگان

  • Jon M. Kornhauser
  • Christopher W. Cowan
  • Adam J. Shaywitz
  • Ricardo E. Dolmetsch
  • Eric C. Griffith
  • Linda S. Hu
  • Chia Haddad
  • Zhengui Xia
  • Michael E. Greenberg
چکیده

The transcription factor CREB mediates diverse responses in the nervous system. It is not known how CREB induces specific patterns of gene expression in response to different extracellular stimuli. We find that Ca(2+) influx into neurons induces CREB phosphorylation at Ser133 and two additional sites, Ser142 and Ser143. While CREB Ser133 phosphorylation is induced by many stimuli, phosphorylation at Ser142 and Ser143 is selectively activated by Ca(2+) influx. The triple phosphorylation of CREB is required for effective Ca(2+) stimulation of CREB-dependent transcription, but the phosphorylation of Ser142 and Ser143, in addition to Ser133, disrupts the interaction of CREB with its cofactor CBP. These results suggest that Ca(2+) influx triggers a specific program of gene expression in neurons by selectively regulating CREB phosphorylation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activity-Dependent Transport of the Transcriptional Coactivator CRTC1 from Synapse to Nucleus

Long-lasting changes in synaptic efficacy, such as those underlying long-term memory, require transcription. Activity-dependent transport of synaptically localized transcriptional regulators provides a direct means of coupling synaptic stimulation with changes in transcription. The CREB-regulated transcriptional coactivator (CRTC1), which is required for long-term hippocampal plasticity, binds ...

متن کامل

Multiple protein kinase A-regulated events are required for transcriptional induction by cAMP.

The second messenger cAMP stimulates the expression of numerous genes via the protein kinase A-mediated phosphorylation of the cAMP response element-binding protein (CREB) at Ser-133. Ser-133 phosphorylation, in turn, appears to induce target gene expression by promoting interaction between CREB and CBP, a 265-kDa nuclear phospho-CREB-binding protein. It is unclear, however, whether Ser-133 pho...

متن کامل

Calcineurin activity is required for depolarization-induced, CREB-dependent gene transcription in cortical neurons.

Cyclic AMP response element binding protein (CREB) functions as an activity-dependent transcription factor in the nervous system. Increases in intracellular Ca(2+) due to neuronal activity lead to the phosphorylation and subsequent activation of CREB. Although phosphorylation of CREB at Ser-133 is necessary for the stimulation of transcriptional activity, it is not sufficient. Here we demonstra...

متن کامل

MinireviewDynamic Multiphosphorylation Passwords for Activity - Dependent Gene Expression

long-lasting Ser133 phosphorylation, suggesting the imSynapse-to-nucleus signaling leading to CREB-mediportance of the time integral of phospho-CREB. Possible ated transcription is important for neuronal plasticity. additional regulatory factors include the adaptors linking Nuclear CREB phosphorylation at Ser133 allows converCREB to the basal transcription complex, including the gence of multip...

متن کامل

TORC1 regulates activity-dependent CREB-target gene transcription and dendritic growth of developing cortical neurons.

CREB-target gene transcription during neuronal excitation is important for many aspects of neuronal development and function, including dendrite morphogenesis. However, the signaling events that regulate cAMP response element-binding protein (CREB)-mediated gene transcription during dendritic development are not well understood. Herein we report that the CREB coactivator TORC1 (transducer of re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2002